15 research outputs found

    An Efficient Simulation Environment for Modeling Large-Scale Cortical Processing

    Get PDF
    We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plasticity and short-term plasticity. It uses a standard network construction interface. The simulator allows for execution on either GPUs or CPUs. The simulator, which is written in C/C++, allows for both fine grain and coarse grain specificity of a host of parameters. We demonstrate the ease of use and computational efficiency of this model by implementing a large-scale model of cortical areas V1, V4, and area MT. The complete model, which has 138,240 neurons and approximately 30 million synapses, runs in real-time on an off-the-shelf GPU. The simulator source code, as well as the source code for the cortical model examples is publicly available

    An Efficient Simulation Environment for Modeling Large-Scale Cortical Processing

    Get PDF
    We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plasticity and short-term plasticity. It uses a standard network construction interface. The simulator allows for execution on either GPUs or CPUs. The simulator, which is written in C/C++, allows for both fine grain and coarse grain specificity of a host of parameters. We demonstrate the ease of use and computational efficiency of this model by implementing a large-scale model of cortical areas V1, V4, and area MT. The complete model, which has 138,240 neurons and approximately 30 million synapses, runs in real-time on an off-the-shelf GPU. The simulator source code, as well as the source code for the cortical model examples is publicly available

    Efficient simulation of large-scale spiking neural networks using cuda graphics processors

    No full text
    Abstract—Neural network simulators that take into account the spiking behavior of neurons are useful for studying brain mechanisms and for engineering applications. Spiking Neural Network (SNN) simulators have been traditionally simulated on large-scale clusters, super-computers, or on dedicated hardware architectures. Alternatively, Graphics Processing Units (GPUs) can provide a low-cost, programmable, and highperformance computing platform for simulation of SNNs. In this paper we demonstrate an efficient, Izhikevich neuron based large-scale SNN simulator that runs on a single GPU. The GPU-SNN model (running on an NVIDIA GTX-280 with 1GB of memory), is up to 26 times faster than a CPU version for the simulation of 100K neurons with 50 Million synaptic connections, firing at an average rate of 7Hz. For simulation of 100K neurons with 10 Million synaptic connections, the GPU-SNN model is only 1.5 times slower than real-time. Further, we present a collection of new techniques related to parallelism extraction, mapping of irregular communication, and compact network representation for effective simulation of SNNs on GPUs. The fidelity of the simulation results were validated against CPU simulations using firing rate, synaptic weight distribution, and inter-spike interval analysis. We intend to make our simulator available to the modeling community so that researchers will have easy access to large-scale SNN simulations

    Brain Derived Vision Algorithm on High Performance Architectures

    No full text
    Even though computing systems have increased the number of transistors, the switching speed, and the number of processors, most programs exhibit limited speedup due to the serial dependencies of existing algorithms. Analysis of intrinsically parallel systems such as brain circuitry have led to the identification of novel architecture designs, and also new algorithms than can exploit the features of modern multiprocessor systems. In this article we describe the details of a brain derived vision (BDV) algorithm that is derived from the anatomical structure, and physiological operating principles of thalamo-cortical brain circuits. We show that many characteristics of the BDV algorithm lend themselves to implementation on IBM CELL architecture, and yield impressive speedups that equal or exceed the performance of specialized solutions such as FPGAs. Mapping this algorithm to the IBM CELL is non-trivial, and we suggest various approaches to deal with parallelism, task granularity, communication, and memory locality. We also show that a cluster of three PS3s (or more) containing IBM CELL processors provides a promising platform for brain derived algorithms, exhibiting speedup of more than 140 × over a desktop PC implementation, and thus enabling real-time object recognition for robotic systems

    R.: Novel brain-derived algorithms scale linearly with number of processing elements

    Get PDF
    Algorithms are often sought whose speed increases as processing elements are added, yet attempts at such parallelization typically result in little speedup, due to serial dependencies intrinsic to many algorithms. A novel class of algorithms have been developed that exhibit intrinsic parallelism, so that when processing elements are added to increase their speed, little or no diminishing returns are produced, enabling linear scaling under appropriate conditions, such as when flexible or custom hardware is added. The algorithms are derived from the brain circuitry of visual processing 10, 17, 8, 9, 7. Given the brain’s ability to outperform computers on a range of visual and auditory tasks, these algorithms have been studied in attempts to imitate the successes of real brain circuits. These algorithms are slow on serial architectures, but as might be expected of algorithms derived from highly parallel brain architectures, their lack of internal serial dependencies makes them highly suitable for efficient implementation across multiple processing elements. Here, we describe a specific instance of an algorithm derived from brain circuitry, and its implementation in FPGAs. We show that the use of FPGAs instead of general-purpose processing elements enables significant improvements in speed and power. A single high end Xilinx Virtex 4 FPGA using parallel resources attains more than
    corecore